CADIPT

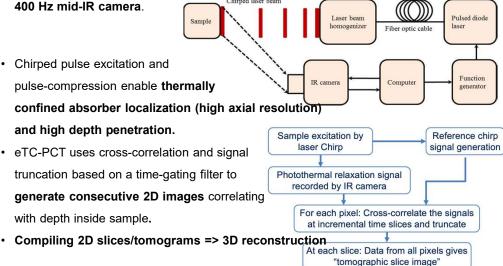
3D depth-resolved imaging using Enhanced Truncated Correlation Photothermal Coherence Tomography (eTC-PCT)

UNIVERSITY OF

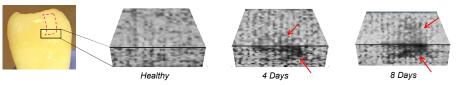
TORONTO

Sohrab Roointan, Pantea Tavakolian, Andreas Mandelis

*Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT) / Mechanical & Industrial Engineering

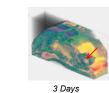

Introduction / Overview

- Photothermal effect: Optical-to-thermal energy conversion (radiative and nonradiative), following light interaction with material.
- Active thermography: Light source generates photothermal response within sample, which is recorded by IR detector and correlated with material composition / structure.
- At CADIPT, we have developed the first bespoke signal-processing algorithm (eTC-PCT) for depth-resolved 3D image reconstruction from photothermal data.
- eTC-PCT detects sub-surface cracks and defects in industrial materials.
- In medical applications, eTC-PCT can reconstruct tissue structures in 3D, and detect and monitor lesion progression.
- eTC-PCT is safe to use on human tissue, has no ionizing radiation, and provides robust early detection capabilities.


Methods/Experimental Approaches

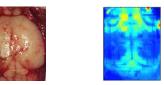
eTC-PCt employs a chirped pulse excitation waveform, an 808-nm diode laser and a

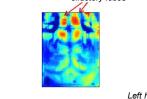
400 Hz mid-IR camera.

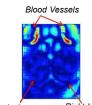


Major Outcomes/Results/Impact

Application of eTC-PCT to early dental caries in-vitro, revealing the progression of caries inside the tooth enamel. (The "trapezoid" shaped part of this image is a 3D cross-section of the subsurface layers)




Engineering


Healthy

9 Days

Application of eTC-PCT to early tumour imaging in small animals to monitor growth. Each image is a cross-section revealing the inside of the animal's leg. olfactory lobes

Left hemisphere Right hemisphere

Application of eTC-PCT to structural brain imaging in small animals ex-vivo. Each 2D slice shows a "deeper" subsurface layer of the brain

The Future: Challenges & Opportunities

eTC-PCT is currently mostly a qualitative imaging/ monitoring modality. Efforts are

underway to **bolster the quantitative aspects** of the system (e.g. depth measurement)

- Use of Long-IR cameras for increased non-radiative signal component and lower cost.
- eTC-PCT shows great promise in complementing the data gathered by conventional imaging modalities, without limitations such as radiation exposure.

Acknowledgements

We acknowledge sources of funding including NSERC, CIHR, and University of Toronto.